ECS 189A Sublinear Algorithms for Big Data Fall 2024

Lecture 16: k-wise Independent Hashing

Lecturer: Jasper Lee Scribe: Nivita Reddy

1 Review / Motivation

Recall the count distinct algorithm from last class. We showed that the space complexity
of the algorithm was O(%2 logn + space for random function g) bits. To store a random
function g : [n] — [n?®] we need O(nlogn) bits. However, this is not necessary - it turns out
that we can make do with less randomness, and less space. Consider the proof used in the
count distinct algorithm. We needed:

e Linearity of expectation

e No covariance between pairs of variables, i.e.,

Since this is the only non-trivial property we need, we can make do with something more
efficient and simpler than a uniformly random function g.

2 Pairwise Independent Hash Families

Definition 16.1. 2-wise Independent Hash Family

Consider a hash family, which is a distribution h <— H over a set of functions [N] — [M].
We say H is a pairwise hash family if for all ¢ # j € [N], a,b € [M],

P N T
B (h(i) = anh() =)= 15
Another interpretation: H is a joint distribution over h(1),..., h(NN). Our definition requires
every (distinct) pair h(i), h(j) to have marginals equal to the uniform product distribution
and h(i), h(j) < Unif[M].

Note: k-wise independence is a property of a hash family, not an individual hash function.
The randomness is over the hash families; if we are just talking about a specific hash func-
tion, fixing a particular h, then everything is a fixed quantity and there is no randomness,
which means

P(h(i) = a A h(j) = b) € {0,1}

Why is k-wise independence useful and what does it buy us? It allows us efficient imple-
mentation while still maintaining independence required for probability calculations.

Proposition 16.2. Consider any function f: [M] — R. Let F =Y f(h(i)) where h < H
for a 2-wise independent hash family H. Then

Var F = ZVar(f(h(z’))

which implies

P(|F —E[F]| > a) < 2 Var(f(h(2))

2
Proof.
Var P = 3 Van(7(4(0) + 3 Cor((h0). 4(3)
= Z;Var(f(h(Z))]
Since h(i), h(j) independent implies f(h(i)), f(h(j)) independent. O

Theorem 16.3. (Few Collisions) Consider 2-wise independent hash family H : [N] — [M].
Then for all i # j € [N]

1
N _pii) < L
B (h(0) = h(7) < 7
Proof. There are M possibilities for what h(i) and h(j) could be, each occurring with

probability #, so we get % = ﬁ O

Note: Any hash family satisfying the above condition is sometimes referred to as a universal
hash family, which is a slightly weaker notion than 2-wise independence (although the two
names are sometimes used interchangeably).

Corollary 16.4. Consider 2-wise independent H : [N] — [M]. Fiz setS C [N] and element
i € [N]. Let X = |{j € S: h(j) = h(i)}| = number of indices in S colliding with i. Then,

Proof.
. . |S]
E[X] =Y P(h(j) = h(i)) <]
jes

3 Construction for 2-wise independent hash family

Some Additional Background on Finite Fields:
A finite field or Galois Field is a set F, with operations

+:FxF—-F

G FxF—=F
such that

1. (F,+) forms an abelian group
2. (F\ {0},-) forms an abelian group (for a 0 element where 0 +a =a+0 = a)
3. For all a,b,c € F, a(b+c¢) = ab+ bc

The order of a finite field is the number of elements in F. For any integer m > 0, and prime
p, there exists a finite field with order p™ elements. There are no other fields and each field
is unique up to isomorphism.

Fact 16.5.

For any integer m > 0, there exists a finite field, with 2™ elements denoted Fom (or GF(2"™))
over [0,...,2™ —1].

To perform addition of 2 elements (which is equivalent to subtraction here), we take their

XOR.

To perform multiplication of 2 elements, we take the bit representation of elements and
represent them as polynomials. We then specify an irreducible polynomial g(x) of degree m
in GF(2) and do polynomial multiplication modulo g(x).

Division is defined as follows: We are in a finite field, so for every ¢ € Fom, there exists a

unique i1 € Fom such thati-i~! L.i =1. To calculate % we use the extended Fuclidean

L and multiply i and j~".

=1
algorithm to find j—
Additional Notes:

For finite fields with order p for a prime p, elements may be represented by integers in the
range [0,---,p — 1]. Addition, subtraction, and multiplication are defined as usual, but
done modulo p, and division is defined with inverses using a similar line of reasoning above:
to calculate ; find j~! (mod p) and multiply i and j~! (mod p). For finite fields with order
p™ for p > 2, operations described above can be generalized.

Now, moving on to constructing such a hash family.

Definition 16.6. Define hash family H : {0,1}" — {0,1}™ as the uniform distribution
th,XQ where hX17X2(u S {0, 1}m) =X1+tu-Xo (deﬁned for all X1, X5 € {0, l}m)

The space used is O(m) bits and we need O(1) finite field operations.
Theorem 16.7. H,, is a pairwise independent hash family.
Proof. Consider arbitrary i # j € FJ* and a,b € FJ*. We want P(h(i) = a Ah(j) =b) = 15

Xi1+i-Xo=a

h(t)=aANh(j) =b&
(i) = anh() {X1+j-X2:b

Solving the system of equations we get

i,7,a,b are all points in the finite field, and addition, subtraction, multiplication, and di-

vision of points in the finite field gives us another point in the finite field. When we fix

i,7,a,b, we fix the values in {0,1}™ that we need X; and X to be. Since X; and X, are

each drawn independently and uniformly at random from {0,1}", X; and X, satisfy the
1

values necessary with probability (CIDER]

Observations:
1. Taking subset of the domain preserves 2-wise independence
2. Deleting bits and coordinates from the range preserves 2-wise independence.

Corollary 16.8. For every m,l > 1, there exists a hash family H,,; : {0,1}™ — {0,1}!
that is 2-wise independent and requires O(max(m,1)) bits to store.

4 Digression: Application to Max-CUT

Problem 16.9. (Max-CUT) Consider a simple weighted graph G = (V, E)) where V = [n].
The goal is to find a subset U C V' to maximize the cut across U, denoted §(U), where

(S(U): Z wij

i€U,j¢U

Algorithm 16.10
1. Take a random g : V' — {0, 1}, where g is drawn from a 2-wise independent hash family
2: Return U = {i : g(i) =1}

Proposition 16.11. Algorithm 16.10 returns a set U so that

Bls(w)] = 5
where
w(@) =) wy
i,jeE

Note that @ s a 2-approximation of the maximum cut, since the mazximum cut is upper

bounded by the sum of weights in the graph.

Proof.

E[5(U)] = > wi- P €UANjEU)AGEUNjEU)

,jEE

=Y wi [PGeUAjEU)+Pli ¢ UNjeEU)) Sum of disjoint events
i,jeE

= Y wi - [P(g(i) = LA g(j) = 0) +P(g(i) = 0 A g(j) = 1)]
i,jeE

1 1 .

= Z Wij - 1 + 1 By Pairwise Independence
,jEE
w(G)

2

Observations:
e Since in expectation, §(U) is %, over a distribution of cuts, the best possible cut
generated by all the g in supp(#) will have weight at least —5~

o g H:{0,1}MoelVIl — 10,1}
e By Corollary 16.8, g needs O(log [V'|) bits to specify.
e So, in polynomial time, we can enumerate all possible g and take the best cut U.

Theorem 16.12. There is a deterministic polytime algorithm for Maxz-CUT such that for
an input graph G, the algorithm outputs U with §(U) > %G)
Proof.

Denote U, as the cut induced by a function g, where g : V' — {0,1}

w(G)

Since Ege%[0(Uy)] = @, there exists go such that 6(Ug,) > —5

We have a polytime algorithm where we can enumerate all possible gy < H, where there
are 20008 IVD) of them. O

5 k-wise Independent Hash Families

For pairwise independent hash families, if we look at 2 particular inputs, the marginals look
independent from each other. For k-wise independent hash families, if we look at a k-tuple
of inputs, and what the function maps to, that should look independent.

Definition 16.13. k-wise independent hash family

Consider a hash family H : [N] — [M]. We say H is k-wise independent if for all distinct

i1, i, € [IN] and all (not necessarily distinct) ay,--- ,a; € [M],
. 1
IP)(/\ h(lj)*aa)*m

S
Theorem 16.14. (k-wise independence implies k-wise universality) Suppose H : [N] — [M]
1s a k-wise independent hash family. Then for all distinct i;,--- iy,

. . 1

hEH(h(ll) == h(ig)) < =

Proof. This follows from the same reasoning as Theorem 16.3. There are M possibilities of
what these values can equal, each occurring with probability ﬁ, so we get % = ﬁ O

Definition 16.15. Define hash family HF {0,1}™ — {0,1}"™ as the uniform distribution
over hy,..x, where hx,..x, (U) = Zle u X

The space used is O(k - m) bits and we need O(k) finite field operations to compute the
hash.

Theorem 16.16. H,gf) 1s k-wise independent

Proof. Consider arbitrary (distinct) i1,...,7; and arbitrary (not necessarily distinct) out-
puts ai,...,ar. Then,
. . k—1
1 5 z% lec T ai
. 1 iz 7,% s i2_1) a9
A hxex) =ae |00 T T | =
Jelh] S S :
1od, 2 iyt \m ak

The above matrix is a Vandermonde Matrix. According to Wikipedia, the determinant is
Hj<l(ij —4;) which is non-zero if and only if 41, ... are distinct. Since each of our iy, ...
are distinct, we have an invertible matrix and therefore a unique solution to (X7i,..., Xg).
This occurs with probability W O

(k)

m,l

Corollary 16.17. For any m,l > 1, there exists a hash family H
dent and uses O(k - max(m,l)) bits.

that is k-wise indepen-

This follows from the same reasoning as 2-wise independence in Corollary 16.8.

https://en.wikipedia.org/wiki/Vandermonde_matrix

	Review / Motivation
	Pairwise Independent Hash Families
	Construction for 2-wise independent hash family
	Digression: Application to Max-CUT
	k-wise Independent Hash Families

