
ECS 189A Sublinear Algorithms for Big Data Fall 2024

Lecture 16: k-wise Independent Hashing

Lecturer: Jasper Lee Scribe: Nivita Reddy

1 Review / Motivation

Recall the count distinct algorithm from last class. We showed that the space complexity
of the algorithm was O(1

ε2
log n + space for random function g) bits. To store a random

function g : [n]→ [n3] we need O(n log n) bits. However, this is not necessary - it turns out
that we can make do with less randomness, and less space. Consider the proof used in the
count distinct algorithm. We needed:

• Linearity of expectation

• No covariance between pairs of variables, i.e.,

E[g(i) · g(j)] = E[g(i)] · E[g(j)]

Since this is the only non-trivial property we need, we can make do with something more
efficient and simpler than a uniformly random function g.

2 Pairwise Independent Hash Families

Definition 16.1. 2-wise Independent Hash Family

Consider a hash family, which is a distribution h ← H over a set of functions [N] → [M].
We say H is a pairwise hash family if for all i 6= j ∈ [N], a, b ∈ [M],

P
h←H

(h(i) = a ∧ h(j) = b) =
1

M2

Another interpretation: H is a joint distribution over h(1), . . . , h(N). Our definition requires
every (distinct) pair h(i), h(j) to have marginals equal to the uniform product distribution
and h(i), h(j)← Unif[M].

Note: k-wise independence is a property of a hash family, not an individual hash function.
The randomness is over the hash families; if we are just talking about a specific hash func-
tion, fixing a particular h, then everything is a fixed quantity and there is no randomness,
which means

P(h(i) = a ∧ h(j) = b) ∈ {0, 1}

Why is k-wise independence useful and what does it buy us? It allows us efficient imple-
mentation while still maintaining independence required for probability calculations.

1

Proposition 16.2. Consider any function f : [M]→ R. Let F =
∑
f(h(i)) where h← H

for a 2-wise independent hash family H. Then

VarF =
∑
i

Var(f(h(i))

which implies

P(|F − E[F]| ≥ a) ≤
∑

i Var(f(h(i))

a2

Proof.

VarF =
∑
i

Var(f(h(i)) +
∑
i 6=j

Cov(f(h(i)), f(h(j)))

=
∑
i

Var(f(h(i))

Since h(i), h(j) independent implies f(h(i)), f(h(j)) independent.

Theorem 16.3. (Few Collisions) Consider 2-wise independent hash family H : [N]→ [M].
Then for all i 6= j ∈ [N]

P
h←H

(h(i) = h(j)) ≤ 1

M

Proof. There are M possibilities for what h(i) and h(j) could be, each occurring with
probability 1

M2 , so we get M
M2 = 1

M .

Note: Any hash family satisfying the above condition is sometimes referred to as a universal
hash family, which is a slightly weaker notion than 2-wise independence (although the two
names are sometimes used interchangeably).

Corollary 16.4. Consider 2-wise independent H : [N]→ [M]. Fix set S ⊆ [N] and element
i ∈ [N]. Let X = |{j ∈ S : h(j) = h(i)}| = number of indices in S colliding with i. Then,

E[X] ≤ |S|
|M |

Proof.

E[X] =
∑
j∈S

P(h(j) = h(i)) ≤ |S|
|M |

3 Construction for 2-wise independent hash family

Some Additional Background on Finite Fields:
A finite field or Galois Field is a set F, with operations

+ : F× F→ F

· : F× F→ F

such that

2

1. 〈F,+〉 forms an abelian group

2. 〈F \ {0}, ·〉 forms an abelian group (for a 0 element where 0 + a = a+ 0 = a)

3. For all a, b, c ∈ F, a(b+ c) = ab+ bc

The order of a finite field is the number of elements in F. For any integer m > 0, and prime
p, there exists a finite field with order pm elements. There are no other fields and each field
is unique up to isomorphism.

Fact 16.5.

For any integer m > 0, there exists a finite field, with 2m elements denoted F2m (or GF(2m))
over [0, . . . , 2m − 1].

To perform addition of 2 elements (which is equivalent to subtraction here), we take their
XOR.

To perform multiplication of 2 elements, we take the bit representation of elements and
represent them as polynomials. We then specify an irreducible polynomial g(x) of degree m
in GF(2) and do polynomial multiplication modulo g(x).

Division is defined as follows: We are in a finite field, so for every i ∈ F2m, there exists a
unique i−1 ∈ F2m such that i ·i−1 = i−1 ·i = 1. To calculate i

j we use the extended Euclidean

algorithm to find j−1 and multiply i and j−1.

Additional Notes:
For finite fields with order p for a prime p, elements may be represented by integers in the
range [0, · · · , p − 1]. Addition, subtraction, and multiplication are defined as usual, but
done modulo p, and division is defined with inverses using a similar line of reasoning above:
to calculate i

j find j−1 (mod p) and multiply i and j−1 (mod p). For finite fields with order
pm for p > 2, operations described above can be generalized.

Now, moving on to constructing such a hash family.

Definition 16.6. Define hash family H : {0, 1}m → {0, 1}m as the uniform distribution
hX1,X2 where hX1,X2(u ∈ {0, 1}m) = X1 + u ·X2 (defined for all X1, X2 ∈ {0, 1}m).

The space used is O(m) bits and we need O(1) finite field operations.

Theorem 16.7. Hm is a pairwise independent hash family.

Proof. Consider arbitrary i 6= j ∈ Fm2 and a, b ∈ Fm2 . We want P(h(i) = a∧ h(j) = b) = 1
M2

h(i) = a ∧ h(j) = b⇔

{
X1 + i ·X2 = a

X1 + j ·X2 = b

Solving the system of equations we get

X1 =
i · b− a · j
i− j

,X2 =
a− b
i− j

i, j, a, b are all points in the finite field, and addition, subtraction, multiplication, and di-
vision of points in the finite field gives us another point in the finite field. When we fix
i, j, a, b, we fix the values in {0, 1}m that we need X1 and X2 to be. Since X1 and X2 are
each drawn independently and uniformly at random from {0, 1}m, X1 and X2 satisfy the
values necessary with probability 1

(2m)2
.

3

Observations:

1. Taking subset of the domain preserves 2-wise independence

2. Deleting bits and coordinates from the range preserves 2-wise independence.

Corollary 16.8. For every m, l ≥ 1, there exists a hash family Hm,l : {0, 1}m → {0, 1}l
that is 2-wise independent and requires O(max(m, l)) bits to store.

4 Digression: Application to Max-CUT

Problem 16.9. (Max-CUT) Consider a simple weighted graph G = (V,E) where V = [n].
The goal is to find a subset U ⊆ V to maximize the cut across U , denoted δ(U), where

δ(U) =
∑

i∈U,j /∈U

wij

Algorithm 16.10

1: Take a random g : V → {0, 1}, where g is drawn from a 2-wise independent hash family
2: Return U = {i : g(i) = 1}

Proposition 16.11. Algorithm 16.10 returns a set U so that

E[δ(U)] =
w(G)

2

where
w(G) =

∑
i,j∈E

wij

Note that w(G)
2 is a 2-approximation of the maximum cut, since the maximum cut is upper

bounded by the sum of weights in the graph.

Proof.

E[δ(U)] =
∑
i,j∈E

wij · P[(i ∈ U ∧ j /∈ U) ∧ (i /∈ U ∧ j ∈ U)]

=
∑
i,j∈E

wij · [P(i ∈ U ∧ j /∈ U) + P(i /∈ U ∧ j ∈ U)] Sum of disjoint events

=
∑
i,j∈E

wij · [P(g(i) = 1 ∧ g(j) = 0) + P(g(i) = 0 ∧ g(j) = 1)]

=
∑
i,j∈E

wij ·
[

1

4
+

1

4

]
By Pairwise Independence

=
w(G)

2

4

Observations:

• Since in expectation, δ(U) is w(G)
2 , over a distribution of cuts, the best possible cut

generated by all the g in supp(H) will have weight at least w(G)
2

• g ← H : {0, 1}dlog |V |e → {0, 1}

• By Corollary 16.8, g needs O(log |V |) bits to specify.

• So, in polynomial time, we can enumerate all possible g and take the best cut Ũ .

Theorem 16.12. There is a deterministic polytime algorithm for Max-CUT such that for
an input graph G, the algorithm outputs U with δ(U) ≥ w(G)

2 .

Proof.

Denote Ug as the cut induced by a function g, where g : V → {0, 1}

Since Eg←H[δ(Ug)] = w(G)
2 , there exists g0 such that δ(Ug0) ≥ w(G)

2

We have a polytime algorithm where we can enumerate all possible g0 ← H, where there
are 2O(log |V |) of them.

5 k-wise Independent Hash Families

For pairwise independent hash families, if we look at 2 particular inputs, the marginals look
independent from each other. For k-wise independent hash families, if we look at a k-tuple
of inputs, and what the function maps to, that should look independent.

Definition 16.13. k-wise independent hash family

Consider a hash family H : [N] → [M]. We say H is k-wise independent if for all distinct
i1, · · · , ik ∈ [N] and all (not necessarily distinct) a1, · · · , ak ∈ [M],

P(
∧
j∈[k]

h(ij) = aj) =
1

Mk

Theorem 16.14. (k-wise independence implies k-wise universality) Suppose H : [N]→ [M]
is a k-wise independent hash family. Then for all distinct ii, · · · , ik,

P
h←H

(h(i1) = · · · = h(ik)) ≤
1

Mk−1

Proof. This follows from the same reasoning as Theorem 16.3. There are M possibilities of
what these values can equal, each occurring with probability 1

Mk , so we get M
Mk = 1

Mk−1 .

Definition 16.15. Define hash family H(k)
m : {0, 1}m → {0, 1}m as the uniform distribution

over hX1···Xk
where hX1···Xk

(U) =
∑k

i=1 u
i−1 ·Xi

The space used is O(k · m) bits and we need O(k) finite field operations to compute the
hash.

5

Theorem 16.16. H(k)
m is k-wise independent

Proof. Consider arbitrary (distinct) i1, . . . , ik and arbitrary (not necessarily distinct) out-
puts a1, . . . , ak. Then,

∧
j∈[k]

hX1,...,Xk
(ij) = aj ⇔

1 i1 i21 · · · ik−11

1 i2 i22 · · · ik−12
...

...
...

. . .
...

1 ik i2k · · · ik−1k

x1
x2
...
xk

 =

a1
a2
...
ak

The above matrix is a Vandermonde Matrix. According to Wikipedia, the determinant is∏
j<l(ij− il) which is non-zero if and only if i1, . . . ik are distinct. Since each of our i1, . . . ik

are distinct, we have an invertible matrix and therefore a unique solution to (X1, . . . , Xk).
This occurs with probability 1

(2m)k
.

Corollary 16.17. For any m, l ≥ 1, there exists a hash family H(k)
m,l that is k-wise indepen-

dent and uses O(k ·max(m, l)) bits.

This follows from the same reasoning as 2-wise independence in Corollary 16.8.

6

https://en.wikipedia.org/wiki/Vandermonde_matrix

	Review / Motivation
	Pairwise Independent Hash Families
	Construction for 2-wise independent hash family
	Digression: Application to Max-CUT
	k-wise Independent Hash Families

